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The form error estimation under various machining conditions is an essential step in the
assessment of product surface quality generated in machining processes. Coordinate
measuring machines (CMMs) are widely used to measure complicated surface form
error. However, considering measurement cost, only a few measurement points are col-
lected offline by a CMM for a part surface. Therefore, spatial statistics is adopted to
interpolate more points for more accurate form error estimation. It is of great signifi-
cance to decrease the deviation between the interpolated height value and the real one.
Compared to univariate spatial statistics, only concerning spatial correlation of height
value, this paper presents a method based on multivariate spatial statistics, co-Kriging
(CK), to estimate surface form error not only concerning spatial correlation but also con-
cerning the influence of machining conditions. This method can reconstruct a more accu-
rate part surface and make the estimation deviation smaller. It characterizes the spatial
correlation of machining errors by variogram and cross-variogram, and it is imple-
mented on one of the common features: flatness error. Simulated datasets as well as
actual CMM data are applied to demonstrate the improvement achieved by the proposed
multivariate spatial statistics method over the univariate method and other interpolation
methods. [DOI: 10.1115/1.4031550]

Keywords: quality control, form error estimation, multivariate spatial statistics, co-Kriging,
coordinate measuring machine

1 Introduction

Surface form is predominantly considered as one of the most
important features of practical product surfaces due to its crucial
influence on the functional behavior of a machined part [1-8].
The form error estimation under various machining conditions is
an essential step in the assessment of part surface quality gener-
ated in machining processes [9]. In order to estimate form error,
the general approach is to fit a set of discrete measurement points
to an underlying model to obtain an artificial surface and calculate
the magnitude of form error. CMMs are widely used as an excel-
lent measurement equipment due to its accuracy and versatility in
measuring complicated geometries [10,11]. Considering measure-
ment cost, only a few measurement points are collected offline
using a CMM for a part surface in mass production. On the other
hand, with the development of new advanced machining condition
measurement equipments, a lot of machining condition data can
be available online. Therefore, fitting an artificial surface with a
more accurate representation of the actual surface using the finite
offline sample points and lots of online measurement data is of
great importance under certain machining conditions.

For a nonstationary process, the form error is composed of two
components: (1) deterministic error representing a deterministic
trend surface that accounts for large-scale variation and is consid-
ered to be spatially dependent; (2) random error representing
small-scale variation on the trend surface and is considered to be
residuals and stochastic in nature and spatially independent. Incor-
porating the deterministic error into an assessment procedure is
crucial in form error estimation for geometric features [12].
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Numerous methods have been used to model deterministic errors.
Yan and Menq [13] explored a two-step method to estimate the
deterministic error. The measurements were used to construct an
artificial surface and this surface was fitted to the nominal surface.
Then, the deterministic error was estimated using the orthogonal
deviation from the nominal surface. Furthermore, a polynomial of
different orders [14], B-spline function [15], and Fourier analysis
[16-18] was presented to model the systematic error. These meth-
ods required a large amount of CMM data in order to estimate the
relatively large number of parameters involved in the polynomial
or B-spline function approaches or to allow a clean separation of
the frequencies in the Fourier analysis approach [19].

Correlation arises frequently in data observed within certain
intervals of space, and the data indeed exhibits a significant
amount of positive autocorrelation [20]. Measurements are often
spatially correlated because they are obtained in similar machin-
ing conditions during the machining process and related to similar
(local) properties of the machined material. Spatial correlation is
different from temporal correlation, which is usually represented
via time series models [21]. In fact, spatial correlation models
allow one to represent contiguity in space rather than in time.

Sayles and Thomas [22] used structure function to model the
spatial correlation in product surface quality studies. Colosimo
and Semeraro [23] used a spatial autoregressive regression model
(i.e., a regression model with spatial autoregression errors) to
characterize the roundness of a manufactured product. Xia et al.
[19] presented a Gaussian process (GP) method for modeling the
deterministic errors using a Gaussian correlation function. The
analysis result shows that the GP method generally gives a less
biased estimate of the form error than the traditional minimum
zone (MZ) and least squares (LS) methods [24-26]. Suriano et al.
proposed a method for efficiently measuring and monitoring sur-
face spatial variations by fusing multiresolution measurements
and process information [27]. Furthermore, inverse distance
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weighted interpolation (IDW) and triangulated irregular network
(TIN) [28] are also widely used methods.

Little research on the spatial statistics-based methods to model
deterministic errors of part form has been conducted and the liter-
ature on this topic is sparse. Spatial statistics, e.g., Kriging
method, is one of most important meta-models for interpolation in
random field [29,30]. Detailed descriptions of existing research on
Kriging meta-modeling for interpolation are provided in a review
[31]. Yang and Jackman [32] applied one univariate spatial statis-
tic method, i.e., ordinary Kriging (OK), to predict machining part
form error. The spatial correlation of the height values (Z coordi-
nates) was modeled as an explicit function of the other two coor-
dinates (X, Y coordinates). The general prediction method was
proposed to estimate the trend of a surface component and to sub-
tract the trend from the sample data to obtain the residuals compo-
nent. The residuals were treated as stationary and a variogram was
fitted to the residuals. Finally, the estimated residuals were com-
bined with the trend surface to obtain estimates of the actual sur-
face. The results showed that fitted surface obtained through OK
can provide more accurate estimates of form error.

Yang and Jackman [32] only considered spatial correlation on
height values obtained offline. With the development of the mea-
surement equipments, more online measurement data are acquired
to monitor the conditions of the machining processes. As well
known, the machining conditions (cutting forces, feed rate, cutting
tool vibration, etc.) are ubiquitous in machining processes and
highly influence the final machining part form errors [33-35].
Chen [36] pointed out that cutting conditions, tool wear, the mate-
rial properties of tool and workpiece, as well as cutting process
parameters (including cutting speed, depth of cut, feed rate, tool
geometry, etc.) significantly influence the form error of finished
surface on machined parts. Roth et al. [37] thought a machining
condition has a direct effect on part quality and proposed online
sensor-based approaches for tool condition monitoring that pro-
vide a means to assess the underlying tool condition during the
cutting process. Benardos and Vosniakos [38] reviewed the
approaches that predict the surface form error and roughness
under various machining conditions.

However, no research has combined spatial correlation with the
machining conditions to analyze the surface form error for a
machined part. Thus, in order to obtain a more accurate artificial
surface for further improving the form error estimation, it is nec-
essary to consider both spatial correlation on measured height val-
ues and the influence of the machining conditions. The spatial
prediction for surface form error considering multiple machining
conditions is a multivariate spatial estimation problem. The goal
of this paper is to estimate form error using multivariate spatial
statistics method.

The rest of this paper is organized as follows: the problem
description is presented in Sec. 2. The method based on multivari-
ate spatial statistics for form error estimation is developed in Sec.
3, which considers both spatial correlation of height value meas-
urements and the influence of the machining conditions. And an
illustrated example is presented. In Sec. 4, the simulation
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Fig. 1
lated and measured points
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experiment and performance analysis are conducted on univariate
and multivariate spatial statistics methods. In Sec. 5, two case
studies are presented to validate the developed method based on
the actual data. Finally, the conclusions are given in Sec. 6.

2 Problem Description and Univariate Spatial Method
for Form Error Estimation

A set of points measured on the part surface can be denoted by
{2(s),s e D} ey

where s is a spatial location vector in R> on the surface, and the
index set D defines a finite region on the surface.

Through a CMM, a set of height value measurements,
{z(s1),...,z(sx)}, can be collected from locations {si,...,s,}
located within this finite region D. Traditionally, the collected
points {z(sy), ...,z(s,)} are directly used to estimate surface form
error with LS or MZ methods (see Fig. 1(a), unit: mm). More
accurate form can be characterized by directly obtaining more
data from the manufactured surface. However, collecting a large
number of measured points requires high cost and decreases pro-
duction efficiency. Univariate spatial statistics (e.g., Kriging)
make it possible to interpolate some points and to reconstruct arti-
ficial surfaces for form error estimation. Univariate spatial statis-
tics method outperforms the direct method in some cases [39] (see
Fig. 1(b)).

Univariate spatial statistics method supposes that the height
values on the surface {Z(s),s € D} are real-valued intrinsically
stationary random fields, which for all s,/ € R satisfies [40]

E[Z(s) — Z(s + h)] = 0 @)

29(h) = Var[Z(s) — Z(s + h)] = E[Z(s) = Z(s + h)]*  (3)

where E(-) is the mathematic expectation and Var(-) is the var-
iance of the increment between two points on the surface with the
distance &, 2y(h) called variogram in spatial statistics, denotes the
degree of spatial correlation in a spatial stationary process. In
addition, the correlation at various locations depends only on the
distance of two locations & = |[s; — s;||.

The semivariogram (called variogram for short) (k) is a mea-
surement for the spatial correlation structure at a given distance /,
which is denoted by [41]

7(h) = )

2N, (h Z [Z(Sf) _Z(Sj)}z, heR )

ijEN,(h)

where 7 is the total number of measured points, N,(h) = {(i,]):
i,j € [1,n],||si — sj|| = h} is the number of pairs of measurements
with the given distance £, s;, and s; are the locations of the meas-
ured points. The summation is conducted over all i, j pairs in the
distance class.

Measured point

Interplorated point

(b)

Methods of form error estimation: (a) by directly measured points and (b) by interpo-
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When 7 surface data points, {z(s1),z(s2), ..., z(s,)}, are meas-
ured, the height value Z(sp) at a new point location sy can be esti-
mated through Kriging with the help of variogram. In particular,
Kriging estimation Z(s) is determined by a linear combination of
the data values Z'(so) = > i, 4:[Z(s;)] where J; are weights
chosen on the condition that the estimation is unbiased and the
estimation error variance is smallest.

OK uses sparse scatting measured points to interpolate more
certain points on the part surface and to reconstruct a more accu-
rate artificial surface for form error estimation, which excels the
form error estimation only with the limited direct measurements.

However, the height values of some interpolated points are not
exactly equal to that on the real surface (see Fig. 2, unit: mm).
There is a deviation e between the estimation and the real surface
height value, which leads to the inaccuracy artificial surface con-
struction and form error estimation. The reason of this phenom-
enon is that Kriging predicting the height values only uses known
height value information on measured locations considering the
spatial correlation. It may not meet the accuracy demand of form
error estimation based on univariate spatial correlation. How to
decrease this deviation e to improve the precision of form error
estimation is one of the crucial problems.

In fact, the form error estimation of a part surface is greatly
influenced by the machining conditions, such as the cutting forces,
feed rate, and tool vibration. To establish a more accurate artificial
surface, it is necessary to combine spatial correlation both on the
height values and on the machining conditions.

3 The Proposed Multivariate Spatial Statistics
Method for Form Error Estimation

3.1 Variogram and Cross-Variogram. Usually, the real val-
ues of the machining conditions at different locations can be
online obtained by sensors. The values of the machining condi-
tions are denoted by

{Vi(s),s € D} )

where s is a spatial location vector in the finite region D on the
surface and ¢ is the index of the machining condition types.

Incorporated with the machining conditions V,, the spatial
correlation takes place in the process of {Z(s),s € D} and
{Vi(s),s € D}. Therefore, the variogram has to be extended to
cross-variogram, which characterizes the multivariate spatial
correlation

29,5(h) = Var[A(s) — B(s + h)] = E[A(s) — B(s + h)]*  (6)

The sample cross-variogram by n measured points conducted
from autovariogram is calculated as

. 1
5a(h) = mmegw [A(si) — A(sy)] [B(si) — B(s))]:
xheR!ABE{ZV} @)

where N,A2(h) = {(i,j): i,j € [1,n], ||s: — s;|| = A} is the number
of pairs of measurements of the first variable A and the second
variable B at locations s; and s; when the distance between s; and
s; fits a distance class . The summation is conducted over all i, j
pairs in the distance class.

The proof of Eq. (7) is provided in the Appendix. For more
details on how to construct cross-variogram from autovariogram,
refer to Ref. [42]. Cross-variogram values can increase or
decrease with distance /& depending on the correlation between
variable A and variable B. When models are fitted to the vario-
gram and cross-variogram, the Cauchy—Schwartz relation must be
checked to guarantee a correct estimation variance [43,44]

yag(R)] < |VAA(h)*VBB(h)|%aA7B c{Z,vi} (8)

Journal of Manufacturing Science and Engineering

The Cauchy—Schwarz inequality is considered in the variogram
modeling process to avoid facing with negative definite matrices
and insoluble equation system in CK algorithm [45]. Therefore,
the Cauchy—Schwartz inequality should be satisfied whether using
the cross-covariances or using the cross-variograms [46]. Many
efforts on constructing valid cross-covariance structure in multi-
variate spatial process can be found in the literature of design and
analysis of computer experiments, where a covariance representa-
tion (instead of variogram) of the Kriging method is often used
[47-50]. It can be shown that the Cauchy—Schwartz inequality is
necessary but not sufficient for joint non-negative definiteness of
the fitted cross-covariance models. There is a controversy over the
applicability of the Cauchy—Schwartz inequality to the cross-
variogram matrices [51]. In order to generate non-negative defi-
nite functions for cross-variogram, Rehmanand Shapiro [52] and
Armstrong and Diamond [53] proposed the Fourier transform to
follow the result which is a natural generalization of the
“sufficient” part of Bochner’s theorem.

Cross-variogram y,z(h), as well as variogram 7(h), can be
modeled to a theoretical variogram through a least square fitting
process. As the distance /1 gets larger, the variogram values
increase, which indicates that as two locations get farther apart,
the expected difference of the measured values between these two
locations increases as well.

The theoretical variogram model has three main parameters: (1)
Nugget (Cy) is the semivariance at zero distance due to measure-
ment error and microscale variation. (2) Sill (Cy+ Cy) is the
semivariance value of the plateau, which is the maximum height
of the variogram curve. As distance / gets large, the correlation
between the two points becomes negligible and the value of vario-
gram tends to be stationary. (3) Correlation length (a) is the dis-
tance at which the semivariance achieves the plateau, which
means that pairs of points larger than this distance apart are negli-
gibly correlated.

There exist various models for fitting diverse empirical vario-
grams in practice. Some popular theoretical fitting models include

3
s(2) -os(2) |o<nza
a a

Co+Ci,h>a

Spherical model: y(h)

— ) Co+C

(C)]

3h
Exponential model : /(h) =Co+C {1 — exp (— ;)] (10)

Measured point

Fig. 2

Influence of machining conditions
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_ 2mh

Periodicity model: y(h) = W{l — %sin(())}, 0 (11)

where W is the amplitude and w is the wavelength of periodicity
variogram.

The differences among the theoretical variogram models vary
in the fitting degree, thus it is important to choose the best theoret-
ical variogram model by appropriate fitting standards. Among
them, the ratio of the structural effects is frequently used, which is
the ratio of nugget to sill and sill (C;/Co + Cy). It characterizes
the degree of spatial heterogeneity, which means the spatial vari-
ability caused by the autocorrelation occupies the proportion of
the total variation of the system. The larger the ratio is, the stron-
ger the spatial correlation is. The stronger spatial correlation for
the theoretical variogram, the more precise estimation for the pre-
dictive modeling interpolation by spatial statistics method, and
thus it makes form error estimation more accurate.

3.2 Multivariate Spatial Method. CK is a multivariate spa-
tial interpolation method based on the multivariate spatial correla-
tion structure [54]. Compared to Kriging, it organizes not only a
sparse set of data (height value, denoted Z) but also other data sets
that are dense and can be sampled more frequently and regularly
(machining condition, denoted V). Figure 3 shows the different
variables and data information used in Kriging and CK to interpo-
late the unmeasured points. CK requires more information which
is designated by machining conditions V, V5. In Fig. 3, black dots
Z(s;),i € {1,2,3,4} are measurements of height values at
locations s;, and black squares are unmeasured points sy that
will be interpolated. Vi(s,),a € {2,3,4,6,7} and Vy(sp),b €
{1,2,4,5,6} are measurements of machining conditions at loca-
tions s, and s,, locations ss, ¢, 57 on surface in Fig. 3(b) are new
measured points required for CK.

The height value Z is the target variable and the machining con-
dition V, gives the supportive information for the target variables.
Both autocorrelation and cross-correlation between Z and all other
machining condition variable V, are used to make better predic-
tions. In fact, at some location s*, if there is only the measurement
of machining condition variable V, (as the measurement
A(s*)),and there is not any measurement of height value Z (as the
measurement B(s*)), the data of A(s") is still useful for the estima-
tor. Even if there is no cross-correlation between Z and V,, or even
if no measurement of Z at some locations, it can still fall back on
the autocorrelation for height value. So CK can theoretically do
no worse than Kriging. At the same time, the deviation between
the real surface and the estimated height value in the univariate
spatial method can more or less decrease. Therefore, it is possible
to improve the precision of form error estimation using CK.

Incorporated with machining conditions, the height value Z(sp)
at the unmeasured point location sy can also be determined by a
linear combination of the measured CMM data. The interpolated
height value by CK can be calculated by [55,56]

2s) o Zs)

n
Z'(5,)?

°
Z(s,) . Z(s,)

(@

N, Ny
Zixc(s0) = D A Vilsi) + D i Valsa) + -+
i= =l

Nt Ny
+ Z AriyVr(stiy) + Z JorZ(Sox) (12)
i=1 =1

where V,(t = 1,2, ...,T) are T machining conditions, and Z is the
main variable, height value, on measured points. s, (t =1,...,7T)
are measured locations of 7" machining conditions, and so is the
measured location of height value. N,(r = 1,2, ..., T) are the total
numbers of the measured locations for 7 machining conditions,
and N is the total number of measured locations for height value.
Ai(t=1,...,T) are weights characterized by the impacts of
machining conditions on the height value of the estimated point
so, and Jg; characterizes the impact of the height values from
known measured locations.

Since CK weights have to satisfy the unbiased constraint
E[Z&k (s0) — Z(s0)] = 0, calculated by

E[Zcx (s0) — Z(s0)]

N, Ny
= E{[Ziu,vl (S1,']) + Z)VZ[QVZ(S%) + -
=l fr
+ iim Vr(srip) + Z():XOkZ(SOk)] —Z(s0)}
= =
— B(ZG0)}(> ok — 1]+ EVi(s1)}S
= izl

N> Nr
+ E{Va(52)}Y iy 00+ E{Vr(smi )} driy =0 (13)
=1

ir=1

Then obtain

No N, N, Nr
Ziok =1, Zﬂ,m =0, Zﬂ% =0 ,.., Z)“TiT =0
=1 =1 =1 ir=1
(14)
Minimizing CK error variance Var[Z ck(so) — Z(so)], calcu-
lated by
min{Var[Zck (so) — Z(s0)]}
= E{{[Zcx (s0) — Z(50)] — E[Zex (0)) — Z(50)}°}
= E{[Zcx (s0) — Z(s0)°}
Ny N>
= E{{ [Z)m', Vi(si,) + Z;LZiZVZ(SZiz) +---
=1

=1

+§:AT,-TVT(XT,-T) + %ioch(SOk)] - Z(Xo)}z}

(15)
ir=1 k=1
Z(s,)
v,
26y T e
Vis,) V,(s,)
n
Z"(5,)? RACY,
Z(S4) [} Vz(sé)
Vi(s,) o Z(s))
ACH I AES Vy(s,)
(b)

Fig.3 Comparison of Kriging and CK variables: (a) Kriging and (b) CK
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Lagrange multipliers are usually used to adjoin constraint equation (15) to an objective function. CK error variance is minimized.

Then obtain

N, N>
D (s =) + Y Ao yia(sa, — 1) 4
=1 =1

ir=1

N, Ny
Y i (su = s1) + Y Ao (s2, — ) + -+
h=1

i=1 ir=1

N, Ny
E Zaiy v ($1i = sr,) + E 2y V72 (821, = 51,) + -
= =l

ir=1

N N>
D ridor(su = sn) + Y Aaintoa (s, — ) 4
=1

=1 ir=1

where the addition parameters p;,i =0,1,2,...,T are Lagrange
multipliers used in minimization of CK error variance ocg” to sat-
isfy the unbiased condition, and ym(sl- —5),p,q=0,1,2,...,Tis
the cross-variogram (p # ¢) or autovariogram (p =g) value

Y4

P1(-30, 30)
. o P4(0, 30)

Po(0, 0)?
| 1 - | |

P5(30, 0)
é l

><V

¢ P2(0, -30)

Fig. 4 Distribution of measured and estimated points

€))

(b)

Fig.5 Color-coded images of simulated surfaces: (a) Case1, (b) Case 2, and (c) Case 3
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Nr
+ Zinr“/or(sm — ) + Z

No

Nt
+ > riir(smi = si) + Y Aovio(sok — 5k) + 1y = 710(s0 — s1,)

k=1

No

Nr
+ Z’lTir“r’zr(STiz — ) + Z%k"/zo(mk — Sk) + My = P20(S0 — S1,)

k=1

(16)

Ny No
+ Ziri»,—yrr(sn,- —sp) + Zﬂvok“/to(s()k = sk) + ur = yro(so — si,)

k=1

No

Zox700(Sox — k) + o = Y00(S0 — 5k)
k=1

7p,(h) between the height values and machining conditions for the
distance i = ||s; — s;|| calculated in spatial correlation.

CK weights can be calculated by the two constraints (Egs. (14)
and (16)). Combined the interpolated points with the measured
points, the artificial surface can be reconstructed closer to the real
surface, which makes it more precise for form error estimation.

3.3 An Illustrated Example. In order to illustrate the pro-
posed multivariate spatial method, a sample surface in the 30 x 30
square with four measured points P;(—30,30),P,(0,—30),
P3(30,0), P4(0,30) is presented (see Fig. 4).

At each point, there are three variables (two independent
machining conditions V;,V, and one dependent height value Z)
that have the spatial correlations. The machining condition V; at
point Py,P,,P3,P4 is known as Vi3 =8 Vi, =3,V;3 =10,
V14 = 7, the machining condition V, at point Py, P, is known as
Va1 =4,V = 11, and the height value Z at point Py, P, is known
as Z; = 9,7, = 12. The goal is to estimate the value of the vari-
able Z at point Py(0,0). The autovariogram of the variables
V1,Va,Z is calculated as (exponential model)

711 (h) = 0.06 +0.7(1 — exp(—h/300)) (V1)
P2 (h) = 0.14 4+ 0.8(1 — exp(—h/200))(V>)
Yo0(h) = 0.22 +0.9(1 — exp(—1/100))(Z)

= =

The cross-variogram between variables is calculated by spherical
model as

(©)
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_ 3
i () = 720" () = 10 (h) = {8:4712—0—}10521(;65(}1/100) 0.5(h/100)7),h < 100
T12(h) = 0~5[V12+(h) =711 () =y (h)]
P20(h) = 0~5[720+(h) = 722(1) = 700 (h)]
T10(h) = 0-5[V10+(h) = 711(1) = 700 (h)]

According to Eqgs. (14)—(16), the constraints are given by

No Ny N>
S =1,) hi=0,3 Jpj=0,(Ny =4, Ny=2, Ny=2)
k=1 i=1 =1

Ny N, No
D ivn(su =) + > (s — 1) + Y _Jocvio(sox — 5k) + i1 = 710(s0 — 57)
i-1 j=1 k—1

N, N> No

D v (s =) + > (s —s1) + Y _Jovao(sok = 5k) + Ha = 720(50 = 57)
i1 1 1

N, N, No
D o (s =) + Y o052 = 57) + Y _Aovoo(Sok — ) + Ho = T0(s0 — 5¢)
i1 1 1

Convert the constraints to the matrix, and the weights are achieved by

A1 0.0600 0.2003 0.2003 0.1266 0.1000 0.0527 0.0600 —-0.0932 1 0 O —0.046
A2 0.2003  0.0600 0.1523 0.1896 0.0527 0.1000 —0.0932  0.0600 1 O O —0.0201
A3 0.2003 0.1523 0.0600 0.1523 0.0527 0.0731 —0.0932 —-0.0460 1 0 O —0.0201
Aa 0.1266 0.1869 0.1523  0.0600 0.0808 0.0596 —-0.0201 —-0.0798 1 0 O —0.0201
21 0.1000 0.0527 0.0527 0.0808 0.1400 0.3680 0.0200 —-0.1771 0 1 O —0.1163
Jn | =] 0.0527 0.1000 0.0731 0.0596 0.3680 0.1400 —-0.1771  0.0200 0 1 O x| —0.0825
Aot 0.0600 —0.0932 —0.0932 —0.0201 0.0200 —0.1771 02200 0.6598 O 0O 1 0.5312
Ao —0.0932 0.0600 —0.0460 —0.0798 —0.1771 0.0200  0.6598 02200 0 O 1 0.4533
Y 1 1 1 1 0 0 0 0 0O 0 O 0

s 0 0 0 0 1 1 0 0 0O 0 O 0

Ho 0 0 0 0 0 0 1 1 0O 0 0 L 1 |

Through the MATLAB programming procedure, the values of the  The estimated height value on Py (0, 0) using CK can be obtained
weights are obtained No

N, N>
Z&(0,0) = AniVilsu) + Y daValso) + D doZ(sox)
A = 0.3703; Jqp = 0.2212; Aj3 = —0.2783 = = =
g =—03132; > "y =0
Jo1 = 0.0456; Joy = —0.0456; Y o =0

=8.9773

The height value of the unmeasured point Py(0,0) can be
achieved by CK using the machining conditions. The cross-

Q31 = 0.4515; J3, = 0.5485; Z Jor = 1 variogram function is simply calculated by known autovariogram,
and all these variograms characterize the spatial correlation on
#y = 0.0047; p, = —0.0266; py = 0.0271 this exampled surface.

Table 1 Manufacturing scenarios for form error estimation

Scenarios L R Ax Ay A\ ;»)- Avib): Aviby /Auvibx /lviby O,
Case | OK 20 0.015 0.05 0.03 2 8 — — — — 0.02
CK 20 0.015 0.05 0.03 2 8 0.025 0.015 1 4 0.02
Case 2 OK 20 0.025 0.006 0.007 5 4 — — — — 0.008
CK 20 0.025 0.006 0.007 5 4 0.003 0.0035 2.5 2 0.008
Case 3 OK 20 0.25 0.008 0.008 5 8 — — — — 0.008
CK 20 0.25 0.008 0.008 5 8 0.004 0.004 2.5 4 0.008
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4 Comparison of Univariate and Multivariate Spatial ~ considering machining conditions for form error estimation, the

Statistics Methods Using Simulated Data simulation experiment has been conducted. Below is the simula-
tion procedure
4.1 Simulation Comparison Procedure. In order to compare Step 1: Simulate a geometric feature on the surface with an area

CK considering machining conditions with OK without of 10 x 10 mm?

x 10° x 10°

Variogram
Variogram

0 . . . . . .
0 y : : y : . 0 1 2 3 4 5 6 7

Distance

€)) (b)

Variogram
Variogram

Distance Distance

© \ (@

Variogram
Variogram

0 1 1 1 1 1 1 0 L L L L 1 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Distance Distance

) ®

Fig. 6 Theoretical variogram of height and vibration and cross-variogram. (a) Case 1: height value, (b) case 1: vibration, (c) case
1: cross-variogram of height value and vibration, (d) case 2: height value, (e) case 2: vibration, (f) case 2: cross-variogram of height
value and vibration, (g) case 3: height value, (h) case 3: vibration, and (i) case 3: cross-variogram of height value and vibration.
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Fig.6 (Continued)

Step 2: Generate a dense enough set of measurements every
0.1 mm, a total of N= 10,000 points on the selected geometric
feature so that the measurements closely represent the actual sur-
face. In an OK simulation, only the height values are generated;
while in CK simulation, the height values and one of the machin-
ing conditions—machine tool vibration value—are generated at
the same time corresponding to locations.

Step 3: Select M = 1000 data points from the set of dense meas-
urements. The M locations and their corresponding observations
are chosen using a random sampling approach. This method
enforces M samples that are evenly spread over the surface.

Step 4: Calculate the variogram for the height, vibration value,
and the cross-variogram between the height and the vibration
using M selected sample data points.

Step 5: Take (M-m) locations as samples to estimate the height
value of m =150, 100, 150, 200, 250, 300, which are as training
samples using OK. Randomly remove half of the M height values,
but insert their corresponding vibration value, and then take
(M-m) locations as testing samples to estimate the height value of
m training samples using CK.

Step 6: For m =50, 100, 150, 200, 250, 300, the height value
estimations determine the flatness error and denoted by fcx (mm)
when using CK, and by fox (mm) when using OK. Determine the

041003-8 / Vol. 138, APRIL 2016

form error f* (mm) from the real height value using the individual
points and treat it as the “true” flatness error.

Step 7: Calculate the form error estimation assessment ratios,
fex /f* and fox /f*. A ratio closer to one indicates a less biased
estimation.

Step 8: Repeat steps (5)—(7) 50 times for each m and generate a
box—whisker plot of the flatness error estimation assessment.

In this simulation, flatness feature is simulated. The data points
from the part surface are generated by the following function
modified from Dowling’s one-dimension function for straight
feature [39]:

_ gR<x3(L — ) + %R(ﬂL -5’

. [(2n . [2n
+Acsin| —x | +Aysin{ —y | +¢
Ax Ay

. . 2n . 2n
vibraion (xy) = Avyibx SIN )—x + Ayiby Sin [ ——
Lvibx

}vviby

z(x,Y)

an

y) (18)

where the first two terms of Eq. (17) represent the surface deflec-
tion, the third and fourth terms are wave patterns and the last one
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is the random error, assumed to be N(0, 6,%). L is the length of the
straight feature, A is the sine wave amplitude (A, Ay, Ayipy, Aviby,
respectively, represent the sine wave amplitude of height value
and vibration value in direction of x-axis and y-axis), 4 is the
wavelength (A, Ay, Aviby, Aviby, Tespectively, represent the sine
wavelength of height value and vibration value in direction of
X-axis and Y-axis), and R is the deflection range.
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Table 1 shows the parameters in simulated machining scenarios
for form error estimation. The simulated surfaces images for dif-
ferent cases are shown in Fig. 5.

4.2 Simulation Results and Discussion. The fitting theoreti-
cal variograms of the height and vibration and their cross-
variograms for different cases in step 4 in Sec. 4.1. are shown in

0.9
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Fig. 7 Box—whisker plot of flatness error estimation comparison for different cases. (a) Case 1: CK, (b) case 1: OK, (c) case

2: CK, (d) case 2: OK, (e) case 3: CK, and (f) case 3: OK.
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Top Surface

Fig. 8 Engine cylinder blocks processed by a major domestic
car manufacturer

Fig. 6. The height variograms and cross-variograms for case 3 are
modeled by spherical models, and the rest are fitted by periodicity
models.

Figure 7 shows the ratios of form error estimation for flatness
feature. In each box—whisker plot, the locations of the upper limit,
the 75% quantile, the median, the 25% quantile, and the lower
limit are shown. The crosses outside of the upper and lower limits

Triangular Mesh Plot
300 ---mmmeeneeees e - a1 8

100 i i i i 8
50 100 150 200 250

Fig. 9 Color-coded image of the engine block face with trian-
gular mesh plot

041003-10 / Vol. 138, APRIL 2016

are usually considered as outliers. The solid line indicates that the
estimation of flatness error is the same as the true flatness error
(i.e., estimated ratio is equal to one). In other words, the best
method is the one that consistently produces box—whisker plots
closest to the solid line. From Fig. 7, some findings are obtained

(1) The proposed CK based method performs significantly bet-
ter than OK when systematic machining errors exist. For
instance, in Case 1 the flatness error estimation assessment
ratio is between 0.7 and 0.75 for OK while between 0.85
and 0.95 for CK.

(2) By comparison, OK tends to underestimate the flatness
error, even when using a relatively large sample size. The
reason is that the flatness error estimation assessment bene-
fits from CK’s ability to capture the systematic machining
errors like the influence of vibration on height value and
form error. OK only treats the height value as a complete
representation of the entire feature.

(3) When the sample size grows larger, CK and OK tend to be
unbiased. This is confirmed that when a large sample is
used, the distribution of f is centered around the actual flat-
ness error.

(4) CK suffers from not having sufficient information when the
simulated sample is small. Some authors point out that a
small sample size is not sufficient [9,39]. To a smaller
degree, insufficient information from a small sample gener-
ally leads to much more uncertainty.

5 Case Study
5.1 Case Study I

5.1.1 Experimental Setup. Machining surfaces for this case is
the engine cylinder block top surfaces (see Fig. 8). The engine
block was machined under closely supervised conditions to ensure
that no anomalous problems with milling process occur. The
material of the engine block is cast iron FC250. The milling pro-
cess was carried out using an EX-CELL-O machining center and
a CBN milling cutter with a diameter of 200 mm. Quaker 370
KLG cutting fluid was used. The cutting speed was 8§16.4 m/min,
the depth of cut was 0.5 mm, and feed rate was 3360 mm/min.

The engine block surface was measured using a CMM and
N =1000 points to an area of 326.5 mm X 174 mm was acquired.
The height deviations are from —80 pum to 80 um. Figure 9 shows
artificial surface with sampling data points.

The tool vibration is considered as one of most important influ-
ence factors during the machining process for the surface flatness
error estimation. Therefore, vibration is taken into consideration
by CK in this case study.

Tool Holder &
Accelerometer

Fixture

AV

pad
\ 4 %4
N

Sensor Units

m=
=]
=l

A/D Board

Power Supply

Fig. 10 Hardware setup for milling and the schematic for vibra-
tion data collection
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Table 2 Basic descriptive statistics for sampling data points

Basic descriptive statistics Height Height after normalization Vibration after normalization
Sample size 1000 1000 1000
Minimum —0.0080 —3.0311 —1.2653
Maximum 0.0081 3.1394 3.7384
Median -2x107* —0.0417 —0.2152
Mean -9.13x107° 8.0158 x 10~ "7 41178 x 10717
Standard deviation 0.0026 1.0005 1.0005
Coefficient of variation —28.5922 1.2482 x 10'° 2.4297 x 10"
Skewness 0.1782 0.1782 1.0139
Kurtosis 3.1109 3.1109 3.5753
Table 3 Parameters of theoretical variogram and cross-variogram
Type Variogram Sill (Cy + Cy) Nugget (Co) Range (a) Structural effects ratio (%)
Variogram of height Spherical model 1.3839 0.1644 197.4504 88.12
Exponential model 2.0492 0.1330 495.6395 93.51
Variogram of vibration Spherical model 1.1360 0.4449 114.1963 60.84
Exponential model 1.0198 0.0383 55.6967 96.24
Cross-variogram of height and vibration Spherical model 2.1535 0.4066 159.9849 81.12
Exponential model 2.4396 0.2478 240.0733 89.84

Table 4 Comparison result with other spatial interpolation

e m—— - ae methods
mpirical variogram o T
——— Spherical Model o oe =
----- Expaonential Model 7 - _..:' TIN IDW OK CK
ME —0.08679 —0.05356 —0.03659 —0.00834

o MSE 0.3057 0.2895 0.1889 0.1342
E AKSE — — 0.4946 0.4215
= MSPE — — —0.08148 —0.04880
5 RMSPE — — 0.8186 0.8552
s

The vibration data collection system was comprised of the
accelerometer sensors from which signals are amplified, converted
to digital data, and processed using Windows-based software.
Figure 10 depicts the hardware setup for milling process and the
schematic for vibration data collection. The accelerometer sensors
are JX20 Eddy current displacement sensors, which were mounted
on the shank of the tool holder.

) | | . L L | . | L )
0 20 40 60 80 100 120 140 160 180 200
Lag distance:h(mm)

Fig. 11 Theoretical variogram of height in spherical model and
exponential model 5.1.2 Data Preprocessing. Basic sample descriptive statistics
of surface height values are given in Table 2. Since the height and

the vibration signal are measured on different scales and units, it
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Fig. 12 Variogram of vibration and cross-variogram of height and vibration
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Fig. 13 MSE comparisons between CK and OK estimation
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Fig. 14 Box-whisker plot of flatness error estimation by differ-
ent methods

is necessary to take these data values into the same measuring
scales. Data normalization method, which adjusts values meas-
ured on different scales to a notionally common scale, is applied
to deal with this problem. The intention is that these normalized
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values allow the comparison of corresponding normalized values
in a way that eliminates the effects of certain gross influences.
Table 2 also shows the descriptive statistics for the height and
vibration after normalization.

The data is normalized according to the below equation:

CX-X
B N

Y

19)

where X is the mean of sample, and s is the standard deviation of
sample.

5.1.3 Results and Discussion

5.1.3.1 Comparison analysis of spatial correlation. The spa-
tial correlation theory treats variograms as a measure of variability
between measured points instead of the Euclidian distance. The
empirical variogram is computed as half the average squared dif-
ference on varied lag distance between the data pairs. As shown in
Fig. 11, the dots characterize the empirical variogram of surface
height computed from the 1000 sampled data points.

The fitting process with LS method is used to obtain quantified
spatial correlation and theoretical variogram. In Eq. (9), the
parameters of spherical model are achieved as [Co+ Cy,
Co,a] = [1.3839,0.1644,197.4504]. In Eq. (10), the parameters
of the exponential model are achieved as [Cop+ Cy,
Co,a] = [2.0492,0.1330,495.6395]. Figure 11 also shows the
spherical and exponential models fitting result for the variogram
of surface height.

In this case, the spatial variability is assumed to be identical in
all directions, variogram value only increases with the separated
distance. It means that two locations close to each other on the
surface are more alike, and thus their squared difference is smaller
than those that are further apart. From Table 3, the variogram of
the height value reaches a maximum at 197 mm for the spherical
model and at 495 mm for the exponential model before dipping
and fluctuating around a sill value. The structural effect ratio in
exponential model, compared with the spherical model, has the
larger value, which means that the spatial correlation between
sample points fitted by exponential model is stronger. Therefore,
the predictive value of height by Kriging or CK may theoretically
be achieved with optimal minimum error.

The vibration signal value is similarly established using theoret-
ical variogram in spherical and exponential models. Figure 12
shows the fitted line for the variograms of the vibration signal
value and the cross-variogram of height and vibration. Figure
12(a) is the theoretical variogram of vibration in spherical model
and exponential model, and Fig. 12(b) is the theoretical cross-

1,25 Fr

12
1.15

0.95
0.9
0.85
0.8
075 50 100 150 200 250 300
(b)

Fig. 15 Box—whisker plot of flatness error estimation comparison by different sample size: (a) CK and (b) OK
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Fig. 16 The workpiece for case study Il

variogram of height and vibration in exponential and spherical
model.

5.1.3.2 Comparison analysis with other spatial interpolation
methods. To better understand how different interpolation meth-
ods perform, the height values of 500 data points are estimated in
sequence. The difference is examined between the known data
and the predicted data using cross validation criteria: mean error
(ME), mean square error (MSE), average of Kriging standard
error (AKSE), mean standardized prediction error (MSPE), and
root mean square standardized prediction error (RMSPE)

1 n
ME = ;; [2* (s:) — 2(s1)] (20)
— 1 - * . J— . 2
MSE = ;; (2 (s1) — 2(s1)] @
AKSE = 4 /% Z: a2(s;) (22)
_INRZs) — Z(si)
MSPE = - ; e (23)
1 n ZV Z 2
RMSPE = , |- [M] (24)
= a(si)

Fig. 17

Journal of Manufacturing Science and Engineering

where n is the training sample size, z(s;) is the true height value,
z*(s;) is the predicted value, and the corresponding Kriging stand-
ard error o(sg).

The calculated ME is a weak diagnostic for Kriging because it
is insensitive to inaccuracies in the variogram. The value of ME
also depends on the scale of the data, and is standardized through
dividing by the Kriging variance to form the MSPE. An accurate
model would have an MSPE close to zero. If the model for the
variogram is accurate, then the MSE should equal the Kriging var-
iance, so the RMSPE should equal to one. If the RMSPE is greater
than one, then the variability in the predictions is underestimated,
and vice versa. AKSE is calculated by the Kriging error variance,
which reflects the precision of estimation.

Table 4 shows the comparison result after spatial interpolation
by 500 estimated points. Since TIN and IDW methods do not
have estimation variance error, criteria MSPE and RMSPE cannot
be obtained for them. From Table 4, some findings are obtained

(1) The unmeasured point can be estimated by nearest meas-
ured points using traditional interpolation methods like TIN
and IDW, but the result of estimation is less precise than
the Kriging methods. The indices of ME and MSE for TIN
and IDW are larger than that for the Kriging methods. This
is because the number of measured points used for estima-
tion by TIN and IDW is limited and the weights of these
measured points are specially fixed.

(2) In comparison with different spatial statistics methods,
Kriging method can obtain much more accurate estimation
with smaller ME and MSE. Moreover, multivariate CK
method considering the machining conditions has a more

(b)

Curved surface of the workpieces: (a) curved surface with upper and lower plane surfaces and (b) curved surface
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Fig. 18 Box-whisker plot of MSE comparison by different sample size: (a) OK and (b) CK
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Fig. 19 Diagram of form error estimation for curved surface

Table 5 Comparison result of cross validation by OK and CK
for case study Il

OK CK
ME 0.1084 0.0614
MSE 0.3387 0.2587
AKSE 2.4255 1.7615
MSPE 0.0391 0.0165
RMSPE 0.2233 0.3585

accurate estimation by comparing the results of MSPE and
RMSPE. According to AKSE, calculated by Kriging error
variance, it indicates the uncertainty of the estimation by
Kriging methods. Apparently CK has a much more reliable
estimation.

Furthermore, Fig. 13 shows the comparison between CK with
vibration signal and OK with different training sample size.

According to the average values of MSE in different numbers of
points, CK achieves lower MSE value, which means CK is much
more valid for estimating the height value taking vibration into
account. On the other hand, with the increasing training sample
size, the MSE decreases. When it reaches a specified number of
training sample points (150 for OK and 200 for CK), the MSE
increases. This phenomenon indicates that appropriate training
sample size can reach the most precise estimation by Kriging
methods. So Kriging method is also applied to decide the appro-
priate inspection samples and the measure sample size.

5.1.3.3 Comparison analysis of flatness error estimation with
other methods. The flatness errors of the engine block surface
were calculated using LS method. The form error of the real
height value by 600 measured points is treated as true flatness
error, and the general flatness error is calculated using interpola-
tion methods: TIN, IDW, OK, and CK. The inspection process is
conducted using 100 sample points from this surface based on a
random sampling method, and then interpolation methods are
applied to estimate 500 locations in sequence and generate an arti-
ficial surface to calculate the flatness error. The 100 sample points
are used to calculate the flatness error through the direct method.

The flatness error calculated by CK is 0.01339, which is closer
to the true value 0.01336, compared with OK with exponential
model (0.01328) and with spherical model (0.01347). Since we
use a rectangular grid to represent the predicted surface and calcu-
late the flatness error, the results could be low when the points do
not capture the minimum and maximum points. Estimated flatness
error is smaller by OK with the exponential model.

Figure 14 shows the box—whisker plot of the flatness error esti-
mation by different spatial interpolation methods. Hundred sample
points are randomly chosen for 50 times to repeat the flatness
error estimation by Direct, TIN, IDW, OK, and CK methods.
Obviously, CK performs better in flatness error estimation which
is more than 97% of the real value, meanwhile for OK, the per-
centage is below 95%.

Figure 15 indicates the flatness error estimation by different
sample sizes by OK and CK methods. When the sample size is

Table 6 Comparison result of form error estimation by OK and CK for case study I

Real Direct OK CK
Sample size 7661 100 500 1000 100 +7561° 100 + 75617
Form error 12713 x 107* 7.3301 x 1073 7.5525x 1073 7.9324 x 1073 9.6079 x 1073 9.9355 x 1073
Ratio 100% 57.6583% 59.4077% 62.3960% 75.5754% 78.1523%

100 + 7561 indicates that 100 initial measured points with 7561 estimated points by OK or CK method.
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larger, CK and OK tend to be unbiased and CK has a greater con-
vergence speed.

5.2 Case Study II

5.2.1 Experimental Setup. Machining surfaces for this case
study is curved surfaces (see Fig. 16). Figure 17 shows an artificial
surface with sampling data points.

The height values Z of the curved surface are measured from
—40mm to 40 mm. Around 7661 points are measured offline on
the curved surface as the true value for the form error estimation.
These 7661 measured points are characterized by three dimen-
sions x, y, and z, and the corresponding vibration signal values are
obtained by the sensor online during the machining process.

5.2.2  Results and Discussion

5.2.2.1 Comparison analysis with other spatial interpolation
methods. On the curved surface, 100 points with three dimensions
measured offline and with vibration signal measured online are
randomly selected as the measured values. OK and CK methods
are applied to estimate the height value Z for the resting 7561
locations. The real height values and the estimated height values
by OK and CK are calculated by the cross-validation criteria: ME,
MSE, AKSE, MSPE, and RMSPE. Table 5 shows the result of
cross-validation criteria values by OK and CK methods.

Obviously, the CK method considering machining conditions
vibration signal can make much more precise estimation. ME,
MSE, and MSPE of CK are closer to O than those of OK. The
uncertainty of Kriging error variance AKSE of CK is less than
that of OK, which means the precision of estimation. But the
RMSPE of OK and CK is less than 1, which means the sample
size of initial measured points for estimation is not enough. It
needs much more information for Kriging estimation.

Figure 18 shows the box—whisker plot result of cross validation
criteria MSE by OK and CK estimation with a different initial
sample size. With the increasing of initial sample size for Kriging
estimation, the MSE tends to 0. And for CK method, the speed of
convergence is much more higher than that for OK method.

5.2.2.2 Comparison analysis of form error estimation with
other methods. For the curved surface, the form error estimation
is using the MinMax method introduced by Yang and Jackman
[57]. It is calculated by the sum of the maximum distance between
the upper or lower measured points and the fitting curved surface
(see Fig. 19), which means the minimum distance between the
two enveloping surfaces along the fitting curved surface.

Table 6 shows the comparison of form error estimation by
direct method, OK and CK method for the curved surface. The
form error estimation of the 7661 measured points is regarded as
the true value. The direct method chooses randomly 100, 500,
1000 measured points with three dimensions for the form error
estimation. For OK and CK, 100 measured points are randomly
chosen for estimation of height values Z in the remaining 7561
locations. The ratio is calculated by the form error of direct, OK,
or CK method and that of real measured points.

From Table 6, we observe that

(1) With the increase of initial sample size of measured points
used to form error estimation, the precision grows from
57% to 62%. But the rate of growth is limited according to
the growth of sample size. However, the growth of sample
size is at the cost of the measuring cost and efficiency.

(2) The spatial interpolation method can greatly increase the
precision of the form error estimation from 57% to 75%
even though the number of initial measured points remains
low. The improvement for form error estimation is consid-
erable and the measurement cost is reduced.

(3) The proposed multivariate spatial interpolated method still
can improve the estimation precision by 2.58% compared
to the OK method. This improvement is not large but of

Journal of Manufacturing Science and Engineering

great importance for the form error estimation in the manu-
facturing process.

6 Conclusions

A novel method based on multivariate spatial statistics is devel-
oped for more accurate form error estimation. In order to decrease
the deviation between the real values and the estimated values, the
machining condition data measured online impacting the surface
are taken into account. Compared to univariate spatial Kriging
method, the multivariate spatial prediction method CK, concern-
ing multiple parameters with different spatial correlations, per-
forms better for the form error estimation. The spatial correlation
on product surface is characterized by appropriate variogram and
cross-variogram.

Through analyzing the simulation cases, CK considering vibra-
tion influence could improve the accuracy of flatness error estima-
tion by 10% over OK without considering vibration. For the case
studies, the plane product surface and curved product surface are
both illustrated to validate the proposed multivariate spatial statis-
tics CK method. The flatness error estimation on the plan surface
by CK also outperforms 10% by direct or TIN/IDW method, and
3-5% by OK. For the form error estimation on the curved surface,
CK considering machining conditions can greatly improve the
prediction up to 20% comparing with the direct method and also
perform better than OK.
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Appendix

The variance and covariance of the parameters Z; and Z, at
locations s and s + & are described as

Culh) = EUZ(s) ~ m} (Zis + W) — )] (AD
Car(h) = E[{Za(s) — o H{Za(s + 1) — 11 }] (A2)
Cia(h) = E{Z:(s) — pu HZa(s + 1) — 11 }] (A3)

where £, and p, are the mean of parameters Z; and Z,.
Therefore, the theoretical calculation of covariance based on
limited measured points is described as

N(h)

71 (i)
p

N(h)
C () = ﬁ(mz{zl (s1)zalsi + )} — ﬁ(h)

i=1

1 N(h)
SN > s+ h) (A4)
i=1

According to the calculation process of covariance, the vario-
gram and co-variogram are constructed as

71, (h) = %E {{Zl (s) —Zi(s+ h)}z] (AS5)

725 (h) = %E {{Zz(s) —Zy(s + h)}z] (A6)

(k) = %E[{Zl (5) = Zils + W }H{Za(s) = Za(s + M)} (AT)

And the theoretical co-variogram is calculated

APRIL 2016, Vol. 138 / 041003-15

Downloaded From: https://manufacturingscience.asmedigital collection.asme.or g/ on 11/02/2015 Terms of Use: http://www.asme.or g/about-asme/ter ms-of-use



1 N(h)

= 72{21 (xi) — 21 (x;i + h)}{zz(xi) — (g +h)}

7*12(h) N () 2

(A8)

So the co-variogram is constructed as

1
nas(h) =55y D [AG) —Aw)] [Bs) — B(s)]:
i jEN,AB(h)
xh€RABc{ZV}
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